# Frenetic Array

## The intersection of logic and imagination.

One of the big takeaways in my introduction to Evolutionary Algorithm was the sheer number of numerical parameters.

• $\mu$ And $\lambda$
• Mutation Rate
• $k$ in k-Tournament Selection

Not only this, but the sheer number of parameters:

• The genotype
• The mutator operator
• The survivor selection algorithm

And one might be wondering, what is the best operator for $x$ or $y$? Let’s look at an example.

Recall the problem from the previous discussion:

We are going to consider a sample problem: a deciphering program. The premise of the problem is such.

• There is a string of characters (without spaces) hidden away that, after set, is inaccessible.
• There are two ways to retrieve data about the hidden message:
1. Get the length of the string.
2. Given a string, the problem will output how many characters match within the two strings.

Disregarding the other technical details, let us focus on the survivor selection. We used $k$-tournament selection (with $k = 50$). But, let’s run a little experiment:

Run the Evolutionary Algorithm, with $k$ ranging from 5 (basically the bare minimum) to 100 ($\lambda$, the population size), and see how fast the algorithm terminates. Do this 1,000 times to get accurate results.

The result?

As $k$ gets closer to $\mu$, the average termination time decreases. What does this tell us? We picked the wrong survivor selection algorithm.
With $k = \mu$, we no longer have $k$-tournament selection; we have truncation selection (where only the most fit individuals survive). And that's the interesting part about Evolutionary Algorithms: there are no objective, best parameters.